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14.1 Let (Σ3, g) be a smooth Riemannian manifold. We will say that (Σ, g) is asymptotically �at
with n asymptotically �at ends if there exists a compact subset K ⊂ Σ such that Σ \ K
has n connected components Σ1, . . . ,Σn and, for each of them, there exists a di�eomorphism
Φi : Σi → R

3 \ B1(0) with the following property: In the Cartesian coordinates (x1, x2, x3)
associated to this di�eomorphism, the components of the metric g satisfy for any m ∈ N:

∂m(gij − δij) = O(r−m−1) as r → +∞,

where r =
(∑3

i=1(x
i)2
) 1

2 . For any asymptotically �at end Σl, we will de�ne the ADM mass
(MADM)l as the limit (in these coordinates)

MADM =
1

16π
lim

r→+∞

�
Sr

( 3∑
i,j=1

(
∂jgij − ∂igjj

)
N i dA

)
, (1)

where Sr is the coordinate sphere of radius r, N is the normal to Sr (with respect to the �at
metric) and dA is the volume form on Sr induced by the �at metric.

(a) Show that the value of the ADM mass in each asymptotically �at end is invariant under
coordinate transformations of the form x → x+ c+ F (x), where c ∈ R3 is a constant and
F : R3 → R

3 satis�es
∂mF = O(r−m−1) for all m ∈ N

(coordinates in this class are usually called asymptotically Euclidean).

(b) Show that the slice {t = 0} in the maximally extended Schwarzschild spacetime with
mass parameter M > 0, equipped with its induced metric, is asymptotically �at with two
asymptotically �at ends. Show that the ADM mass of each end is equal to M .

*(c) Let (R3; ḡ(ϵ), k(ϵ)) be a smooth family of initial data sets for the Einstein equations

Ricµν −
1

2
Rgµν = 8πϵTµν

with ϵ ⩾ 0, such that ḡ
(0)
ij = δij and k(0) = 0 for all ϵ ⩾ 0. Assume that (R3; ḡ(ϵ)) is

asymptotically �at for all ϵ ⩾ 0. De�ning h = d
dϵ
ḡ(ϵ)
∣∣∣
ϵ=0

to be the linearization of ḡϵ

around ϵ = 0, show that

3∑
i,j=1

(
− ∂2

i hjj + ∂i∂jhij

)
= 16πT (n̂, n̂)

(Hint: Compute the linearization of the Hamiltonian constraint equation.) Deduce that,
if the energy momentum tensor T satis�es the positive energy condition T (n̂, n̂) ⩾ 0, then

d

dϵ
M

(ϵ)
ADM

∣∣∣
ϵ=0

⩾ 0.
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Remark. The above is a special case of the following fundamental result, proven in two
di�erent ways by Schoen�Yau (1979) and Witten (1981):

The positive mass theorem: Let (Σ3, ḡ, k) be an asymptotically �at initial data set for the
Einstein equations for a matter �eld satisfying the dominant energy condition (e.g. vacuum,
scalar �eld, etc). Then the ADM mass of each asymptotically �at end satis�es MADM ⩾ 0,
with equality if and only if (Σ, ḡ, k) is a trivial initial data set, i.e. Σ = R

3 and (ḡ, k) are the
induced metric and second fundamental form of a Cauchy hypersurface of Minkowski spacetime
(if k = 0, this implies that ḡ is the �at Euclidean metric).

Solution.

(a)

Let y⃗
.
= x⃗ + c⃗ + F (x⃗) be a coordinate transformation, with F as in the assumption. Note that,

when computing the ADM mass MADM in the two coordinate systems (x1, x2, x3) and (y1, y2, y3)
using the formula (1), there are two things that we need to take care of:

1. The expressions for ∂igjl are di�erent in the two coordinate systems,

2. The coordinate spheres Sr = {(x1, x2, x3) :
∑3

i=1(x
i)2 = r2 and S ′

r = {(y1, y2, y3) :
∑3

i=1(y
i)2 =

r2 are possibly di�erent surfaces in R3 (see also the �gure below). We denote by Dr the region
between Sr and S ′

r.

Sr
S ′
r

Dr

Let us �rst see how the coordinate vector �elds transform under the coordinate transformation
(x1, x2, x3) → (y1, y2, y3):

∂

∂xi
=

∂yk(x⃗)

∂xi

∂

∂yk
=
(
δki + ∂iF

k
) ∂

∂yk
=

∂

∂yi
+ ∂iF

k ∂

∂yk
.
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Note that the coe�cient ∂iF
k above satis�es

∂xiF k = O(r−2) (2)

(in view of our assumption on F ). Then, using the above we can expand and show

∂jgij = ∂xjg

(
∂

∂xi
,

∂

∂xj

)
= ∂yjg

(
∂

∂yi
,
∂

∂yj

)
+O(r−2) as r → ∞ (3)

Note, terms in the expansion above of the form

∂yj
(
∂iF

k
)
· g
(

∂

∂yk
,
∂

∂yj

)
satisfy ∂yj

(
∂iF

k
)
= O(r−3). To see this, we write

∂yj
(
∂iF

k
)
=

∂xm

∂yj
∂xm∂xiF k

By assumption, we have that ∂xm∂xiF k = O(r−3) as r → ∞, so we only need to justify that ∂xm

∂yj
are

bounded functions (i.e. they don't contribute any r−growth) as r → +∞. However, by the inverse
function theorem, these functions correspond to the components of the inverse of the Jacobian matrix

Jy =
∂(y1,y2,y3)
∂(x1,x2,x3)

, which we computed before to be

Jy = I+ [dF ], or, in components, (Jy)
j
i = δji + ∂xiF j].

Using the asymptotics (2) and the formula (I+ A)−1 = I− A+O(∥A∥2), we infer the boundedness
of ∂xm

∂yj
as r → ∞.

Similarly, we have

∂igjj = ∂xig

(
∂

∂xj
,

∂

∂xj

)
= ∂yig

(
∂

∂yj
,
∂

∂yj

)
+O(r−2) as r → ∞ (4)

while also, the components of the normal vector to Sr, N = N i ∂
∂xi = N i ∂

∂yi
+hk ∂

∂yk
, with hk = O(r−2)

as r → ∞, for any k.
Let us denote by f : Σ \ K → R the function which in the (x1, x2, x3) coordinate chart takes the

form

f(x) =
3∑

i,j=1

(
∂xj(g(∂xi , ∂xj)− ∂xi(g(∂xj , ∂xj)

xi

r

)
We will similarly denote by f ′ : Σ \ K → R the function which in the (y1, y2, y3) coordinate chart
takes the form

f ′(y) =
3∑

i,j=1

(
∂yj(g(∂yi , ∂yj)− ∂yi(g(∂yj , ∂yj)

yi

r

)
,
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(where r =
(∑3

i=1(y
i)2
) 1

2 ). Note that the expression of the ADM mass in the (x1, x2, x3) coordinates
takes the form

MADM =
1

16π
lim

r→+∞

�
Sr

f dA =
1

16π
lim

r→+∞

�
Sr

f
(
1 +O(r−1)

)
dvolḡ

where, in passing to the second equality above, we used the fact that the �at volume form dA
and the volume form of the induced metric dvolḡ di�er by a factor of the form 1 + O(r−1) (since
gij − δij = O(r−1)). Similarly, the expression of the ADM mass in the (y1, y2, y3) coordinates gives:

M ′
ADM =

1

16π
lim

r→+∞

�
S′
r

f ′ (1 +O(r−1)
)
dvolḡ.

In view of our previous calculations, we have

f(x)− f ′(x) = O(r−3) at a point x = (x1, x2, x3) with r =
( 3∑

i=1

(xi)2
) 1

2 .

Therefore, since Sr and S ′
r have area ∼ r2, we have

MADM−M ′
ADM =

1

16π
lim

r→+∞

(�
Sr

f
(
1+O(r−1)

)
dvolḡ−

�
Sr

f ′ (1+O(r−1)
)
dvolḡ

)
=

1

16π
lim

r→+∞

(�
Sr

f dvolḡ−
�
S′
r

f dvolḡ

)
.

We can similarly compute that
∥∇xf(x)∥ = O(r−4).

Noting that, in the (x1, x2, x3) coordinate system, the surface S ′
r lies within distance O(1) from Sr

(since Sr =
{
(x1, x2, x3) :

∑3
i=1(x

i)2 = r2
}
and S ′

r =
{
(x1, x2, x3) :

∑3
i=1(x

i+ci+O(r−1)2 = r2
}
), the

domain Dr is contained inside an annulus around Sr of width O(1), and hence has volume ∼ O(r2).
Therefore, we can estimate

∣∣∣MADM−M ′
ADM

∣∣∣ ⩽ 1

16π
lim

r→+∞

∣∣∣∣∣
�
Sr

f dvolḡ−
�
S′
r

f dvolḡ

∣∣∣∣∣ ≲ lim
r→+∞

�
Dr

|∇xf | dx ≲ lim
r→+∞

(
sup
Dr

|∇xf |·vol(Dr)
)
= 0.

(b)

Using Kruskal coordinates from our theory, we know that the maximally extended Schwarzschild
spacetime has two connected unbounded asymptotically �at components, each of which can be cov-
ered by Boyer�Lindquist coordinates

g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 sin θdθ2 + r2dϕ2 (5)
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The induced metric on {t = 0} is

ḡ =

(
1− 2M

r

)−1

dr2 + r2 sin θdθ2 + r2dϕ2

= dr2 + r2 sin θdθ2 + r2dϕ2 +
2M

r − 2M
dr2

To verify its asymptotically �atness and to compute its MADM mass using the de�nition of the
assumption, let us introduce the standard Cartesian coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

r =
√

x2 + y2 + z2.

Note that
dr =

x

r
dx+

y

r
dy +

z

r
dr.

Then, the induced metric takes the form

ḡ = dx2 + dy2 + dz2 +
2M

r − 2M
dr2

For convenience, let us denote by (x1, x2, x3)
.
= (x, y, z), and using dr = x1

r
dx1 +

x2

r
dx2 +

x3

r
dx3, the

components of the line element can be easily veri�ed to be

gij = δij +
2M

r − 2M

xi · xj

r2
, r =

√
x2
1 + x2

2 + x2
3

Note,

gij − δij =
2M

r − 2M

xi · xj

r2
for all r > 2M

from which the asymptotic �atness follows (note that the function on the right hand side is of size
O(r−1), and each ∂xi derivative improves its decay by an order of r−1).

Next, to compute the MADM mass, for any i ̸= j we have

∂jgij =
2M

r − 2M

xi

r4

[
r2 − 3x2

j −
2M

r − 2M
x2
j

]
∂igjj = − 2M

r − 2M

xi

r4
x2
j

[
3 +

2M

r − 2M

]
from which we readily get

∂jgij − ∂igjj =
2M

r − 2M

xi

r2

Note, we get no contribution when i = j since the di�erence is zero. Also, the Euclidean unit normal

vector N to Sr is given in these coordinates by N =
1

r
(x1, x2, x3), thus we have

3∑
i=1

3∑
j=1
j ̸=i

(∂jgij − ∂igjj)N
i =

3∑
i=1

3∑
j=1
j ̸=i

2M

r − 2M

x2
i

r3
=

4M

r − 2M

1

r
=

4M

1− 2M
r

1

r2
(6)
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Therefore, we readily obtain

MADM =
1

16π
lim
r→∞

�
Sr

3∑
i=1

3∑
j=1
j ̸=i

(∂jgij − ∂igjj)N
idA

=
1

16π
lim
r→∞

(
4M

1− 2M
r

1

r2

�
Sr

dA

)

=
1

16π
lim
r→∞

(
4M

1− 2M
r

1

r2
4πr2

)
= M

(c)

Following the hint, we need to linearize the Hamiltonian constraint equation which, in view of κ(ϵ) = 0,
reduces to

R̄(ϵ) = 16πϵT (n̂, n̂)

To linearize the scalar curvature we need to express it in terms of metric coe�cients using the
standard expressions

Γab
c =

1

2

n∑
d=1

(
∂ḡ

(ϵ)
bd

∂xa
+

∂ḡ
(ϵ)
ad

∂xb
− ∂ḡ

(ϵ)
ab

∂xd

)
ḡ(ϵ)

cd

R̄
(ϵ)
ij =

n∑
a=1

∂Γa
ij

∂xa
−

n∑
a=1

∂Γa
ai

∂xj
+

n∑
a=1

n∑
b=1

(
Γa
abΓ

b
ij − Γa

ibΓ
b
aj

)
Let us �x normal coordinates (x1, x2, x3) such that Γk

ij(p) = 0 for all i, j, k ∈ {1, 2, 3}, then we have

R̄ic
(ϵ)
ij =

3∑
a=1

1

2
∂a(ḡ

(ϵ)ak)
[
∂iḡ

(ϵ)
kj + ∂j ḡ

(ϵ)
ki − ∂kḡ

(ϵ)
ij

]
+

3∑
a=1

1

2
ḡ(ϵ)ak

[
∂a∂iḡ

(ϵ)
kj + ∂a∂j ḡ

(ϵ)
ki − ∂a∂kḡ

(ϵ)
ij

]
−

3∑
a=1

1

2
∂j(ḡ

(ϵ)aλ)
[
∂aḡ

(ϵ)
λj + ∂iḡ

(ϵ)
λa − ∂λḡ

(ϵ)
ai

]
−

3∑
a=1

1

2
ḡ(ϵ)aλ

[
∂j∂aḡ

(ϵ)
λi + ∂j∂iḡ

(ϵ)
λa − ∂j∂λḡ

(ϵ)
ai

]

Upon linearization around ϵ = 0 of the above, if
d

dϵ
fall on the �rst and third term they will vanish

(why?). Note,

d

dϵ
R̄(ϵ)

∣∣∣
ϵ=0

=
d

dϵ

(
ḡ(ϵ)

ij
R̄ic

(ϵ)
ij

) ∣∣∣
ϵ=0

=
d

dϵ
ḡ(ϵ)ij

∣∣∣
ϵ=0

·
���

��*
0

R̄ic
(ϵ=0)
ij + δij · d

dϵ
R̄icij

(ϵ)
∣∣∣
ϵ=0

Page 6



EPFL� Fall 2024

Series 14

Di�erential Geometry IV:

General Relativity
G. Moschidis

18 Dec. 2024

Thus, going back to the previous expression, the only terms that survive are the second and the last,

when the derivative
d

dϵ
falls on the bracket terms, for which we get

d

dϵ
R̄(ϵ)

∣∣∣
ϵ=0

= δij · d

dϵ
R̄icij

(ϵ)
∣∣∣
ϵ=0

=
3∑

i=1

3∑
a=1

1

2
δijδak [∂a∂ihkj + ∂a∂jhki − ∂a∂khij]

−
3∑

i=1

3∑
a=1

1

2
δijδaλ [∂j∂ahλi + ∂j∂ihλa − ∂j∂λhai]

=
3∑

i=1

3∑
a=1

1

2

[
2∂a∂ihai − ∂2

ahii −����∂i∂ahai − ∂2
i haa +����∂i∂ahai

]
3∑

i=1

3∑
a=1

(
∂a∂ihai − ∂2

ahii

)
.

Hence, linearizing the Hamiltonian constrain equation yields indeed the statement of the assumption.
To show that the MADM is non-decreasing function of ϵ, we observe that the relation we proved

above can simply be written as

3∑
i,j=1

(
−∂2

i hjj + ∂i∂jhij

)
= 16πT (n̂, n̂) ⩾ 0

⇒ div

(
3∑

j=1

−∂ihjj + ∂jhih

)
⩾ 0

Integrating on balls of radius r, Br, and using the divergence theorem yields for any r

�
Sr

(
3∑

j=1

−∂ihjj + ∂jhih

)
N idA =

�
Br

div

(
3∑

j=1

−∂ihjj + ∂jhih

)
⩾ 0

Note, after taking the limr→∞ of the latter, the �rst term is simply a positive multiple of
dM

(ϵ)
ADM

dϵ

∣∣∣
ϵ=0

,

which concludes the proof.
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