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14.1 Let (X3, g) be a smooth Riemannian manifold. We will say that (3, g) is asymptotically flat
with n asymptotically flat ends if there exists a compact subset K C ¥ such that ¥\ K
has n connected components ¥q,..., >, and, for each of them, there exists a diffeomorphism
®; : ¥; — R3\ B1(0) with the following property: In the Cartesian coordinates (z',2?% x3)
associated to this diffeomorphism, the components of the metric g satisfy for any m € N:

37”(9@- — (523) = O(’/‘_m_l) as r — 400,

1
where r = ( 2)2. For any asymptotically flat end ¥;, we will define the ADM mass
(Mapar): as the hmlt (in these coordinates)
1 3
Mapy = T6m TEIJPOO . (”21 (ajgij - 3¢9jj)]\]’ dA), (1)

where S, is the coordinate sphere of radius r, N is the normal to S, (with respect to the flat
metric) and dA is the volume form on S, induced by the flat metric.

(a) Show that the value of the ADM mass in each asymptotically flat end is invariant under
coordinate transformations of the form z — = + ¢+ F(x), where ¢ € R? is a constant and
F : R® — R? satisfies
O"F =0 ™) forallmeN

(coordinates in this class are usually called asymptotically Fuclidean).

(b) Show that the slice {¢ = 0} in the maximally extended Schwarzschild spacetime with
mass parameter M > 0, equipped with its induced metric, is asymptotically flat with two
asymptotically flat ends. Show that the ADM mass of each end is equal to M.

*(c) Let (R g9, k9) be a smooth family of initial data sets for the Einstein equations
) 1
Ric,, — §ng, = 8mel},,

with € > 0, such that g(0 = &;; and K = 0 for all € > 0. Assume that (R3g) is

to be the linearization of g°

asymptotically flat for all ¢ > 0. Defining h = ag()
e=0

around € = 0, show that
3
Z ( - 0z2hm + azﬁyh”) == 167T(ﬂ, fl)
ij=1

(Hint: Compute the linearization of the Hamiltonian constraint equation.) Deduce that,
if the energy momentum tensor 7 satisfies the positive energy condition 7'(n,7n) > 0, then

d

— > 0.
de APM| o~
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Remark. The above is a special case of the following fundamental result, proven in two
different ways by Schoen—Yau (1979) and Witten (1981):

The positive mass theorem: Let (32, 7, k) be an asymptotically flat initial data set for the
Einstein equations for a matter field satisfying the dominant energy condition (e.g. vacuum,
scalar field, etc). Then the ADM mass of each asymptotically flat end satisfies Mapy, > 0,
with equality if and only if (3, g, k) is a trivial initial data set, i.e. ¥ = R® and (g, k) are the
induced metric and second fundamental form of a Cauchy hypersurface of Minkowski spacetime
(if £ = 0, this implies that g is the flat Euclidean metric).

Solution.

(a)

Let ¥ = ¥ 4+ ¢+ F(Z) be a coordinate transformation, with F' as in the assumption. Note that,
when computing the ADM mass Mypy, in the two coordinate systems (x!, 22, 23) and (y', y?, 3°)
using the formula (1), there are two things that we need to take care of:

1. The expressions for 0;g; are different in the two coordinate systems,

2. The coordinate spheres S, = {(z',22,2%) : 320 (2%)> =2 and S’ = {(y", %%, 4*) : S0, (¥')* =
r? are possibly different surfaces in R? (see also the figure below). We denote by D, the region
between S, and S..

Let us first see how the coordinate vector fields transform under the coordinate transformation
(x', 22, 2%) = (v 9% v°):
0 B Gyk(i’) 0 0 w0

0
(st g Ry kY
9 = on o (6F + O, F") o = oy + O F o
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Note that the coefficient 9;,F* above satisfies
D FF = O(r=2) (2)

(in view of our assumption on F). Then, using the above we can expand and show

o 0 o 0 _
@-gij:@ﬂg (a e ]> :8ng (a_y“a_y]> —I—O(T 2) as r— oo (3)

Note, terms in the expansion above of the form

0 0
o 09 (55

satisfy 0,5 (0;F*) = O(r~®). To see this, we write

0, (0, F%) = a&iy o O F*

Bz

By assumption, we have that 9,m0,: F* = O(r=3) as r — oo, so we only need to justify that
bounded functions (i.e. they don’t contribute any r—growth) as r — +oo. However, by the 1nverse
function theorem, these functions correspond to the components of the inverse of the Jacobian matrix
1,2,3
J, = % which we computed before to be
J, = 14 [dF), or, in components, (J,)] = 67 + 0,: FY).

Using the asymptotics (2) and the formula (I+ A)~! =1 — A+ O(||A|?), we infer the boundedness
of 690
Slmllarly, we have

o 0 g 0 _
0i9jj = Ouig (&N o ]) = 0,ig (a_yﬂ’ 6_3;3) +O(r ?) as 7 — 00 (4)

while also, the components of the normal vector to S,, N = N* 8% N5 a -+ h¥ ak, with h* = O(r—2)
as r — oo, for any k.

Let us denote by f: ¥\ K — R the function which in the (x', 2% z?®) coordinate chart takes the
form

i

F@) = 37 (0 (9(0us, 001) = Dut (90011, 000) )

wa

Il
—

Z?]

We will similarly denote by f' : 3\ K — R the function which in the (y',v? y?) coordinate chart

takes the form
i

= > (D900, 05) — 0 (90,0, 0,) %)

1,j=1
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(where r = (Y0, (v)? )%) Note that the expression of the ADM mass in the (2!, 2%, 2%) coordinates

takes the form

Mapy = —— lim / fdA=— lim f(1+0@"))dvol,

7'(' r—-+oo 1671' r—+00 S,

where, in passing to the second equality above, we used the fact that the flat volume form dA
and the volume form of the induced metric dvol; differ by a factor of the form 1+ O(r~!) (since
gij — 0;; = O(r~1)). Similarly, the expression of the ADM mass in the (y', 4% 4*) coordinates gives:

1
M)py = — lim f (1+O(r~1))dvoly.

167 r—+cc

In view of our previous calculations, we have

3

f(x)— f'(x) =O0(r™?) atapoint x = (z',2% 2°) with r = (Z<x1>2) :

i=1

NI

Therefore, since S, and S’ have area ~ r?, we have

Mapy—Mypyr = ! lim (/ f (140~ ) dvolz— | f (1+0(r~ ))dvol) lim </ f dvolz— /
S, S, :

167 rotoo 167 r—-+oo

We can similarly compute that

IV f2)] = O(r™).
Noting that, in the (2!, 2% z?®) coordinate system, the surface S’ lies within distance O(1) from S,
(since S, = {(xl,x2,x3) D30 (a)? = 7‘2} and S/ = {(xl,x2,x3) D30 (2 EHO(r)? = 7“2}), the
domain D, is contained inside an annulus around S, of width O(1), and hence has volume ~ O(r?).
Therefore, we can estimate

.
-] < 15

/ fdvolz— [ fdvolg
Sy St

< I < i . =
St [ (Vaflde S i (s I92slvol(D)) =

(b)

Using Kruskal coordinates from our theory, we know that the maximally extended Schwarzschild
spacetime has two connected unbounded asymptotically flat components, each of which can be cov-
ered by Boyer-Lindquist coordinates

2M oM\
g=— (1 - —) dt* + (1 — —) dr® + r*sin 0d6* + r*d¢? (5)

T r
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The induced metric on {t = 0} is

oM\
g= (1 — —) dr? 4 12 sin 0dO* + r*d¢?
r
2M
= dr? + r*sin 6d6* + r?d¢* + dr?
r—2M

To verify its asymptotically flatness and to compute its Mapy, mass using the definition of the
assumption, let us introduce the standard Cartesian coordinates

x = rsinf cos ¢, y = rsin#sin ¢, 2z =rcosb,
=22 +y? 4 22
Note that . p;
dr = —dx + gdy + —dr.
r r r
Then, the induced metric takes the form
2M
r—2M

For convenience, let us denote by (21,22, z3) = (z,y, 2), and using dr = Zdx; + 2dry + “dxs, the
components of the line element can be easily verified to be

2M  x;-x;
Gy =0y + —o3r r=/af+ a3+ a3

g = da® + dy?® + dz* + dr?

Note,
2M X+ Ty

9 =% =TT 2
from which the asymptotic flatness follows (note that the function on the right hand side is of size
O(r71), and each 0,: derivative improves its decay by an order of r~!).

Next, to compute the M4py mass, for any ¢ # j we have

2M ZT; [ 2 2 2M 2:|

for all »>2M

LS Ry v el L e TV
2M 2 2M
%951 = = oM r—2M
from which we readily get

0i9ij — 0igj; = r— oM 12
Note, we get no contribution when 7 = j since the difference is zero. Also, the Euclidean unit normal

1
vector N to S, is given in these coordinates by N = —(x1, 22, x3), thus we have
r

3 3 3
oM a2 AM 1 AM 1
22 (Oigis = Dugig)N ZZT—QMF T or—2Mr  1- 2142 ©)
i

1 i=1
)
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Therefore, we readily obtain

3
Mapy = 6= lim [ zz i — Dig)N'dA

1 . AM 1
~ Tor R <—1_ e ), dA)

1 .. 4M 1 9
= ETIE& (—1_ wﬁélﬂr)

=M

(c)

Following the hint, we need to linearize the Hamiltonian constraint equation which, in view of k(9 = 0,
reduces to

R = 167eT (1, 1)

To linearize the scalar curvature we need to express it in terms of metric coefficients using the
standard expressions

1 n ag(e) ag(f) ag(f) cd
r, c_ bd ad ab —(e)
b T3 ; ( Ox® + Oxb ord |7

e "L Or% o
Rz(j) - —1 31‘“] B 83:3 ZZ —Lale )

a=1 b=1

Let us fix normal coordinates (z', 22, %) such that T'¥,(p) = 0 for all i, j, k € {1,2,3}, then we have

3 3
1 € —\€ 1 5 a —(€
= > 5099 [ g + 0,3 — c%gé-)} + Z 59" [3 0:35) + 0a0;31) — 0uh3) ]

=1

3
_()a _(e _(e 1_ a _(e _(e _(e
0;(59") [&lgﬁj +0igh) — 3Ag§2} =D 599" [@‘&lgif +0;0:95,) — @-@gif]

|
M- o1
DO | —

2
Il
—
e
Il
—

d
Upon linearization around e = 0 of the above, if — 7 fall on the first and third term they will vanish
(why?). Note,

_ d
- Ri + §9. ZRic,,"

e=0 w de e=0
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Thus, going back to the previous expression, the only terms that survive are the second and the last,

when the derivative — falls on the bracket terms, for which we get
€

4 Ao

i, 4 @
de = (5‘7 . —R’ZCij

e=0 de

3 3
1.
= Z Z 5(51]5:113 [ﬁaaihkj + 8a8jh,m- — aaakhij]

i=1 a=1

3 3
1 ...
> 55%% 0;0uhxi + 0;0ihag — 0;03hai]

i=1 a=1

3 3
= 3N [20u0ihs — O — Dt — O + D]

i=1 a=1

3 3
>N (0u0ihai — 02his) -

=1 a=1

e=0

Hence, linearizing the Hamiltonian constrain equation yields indeed the statement of the assumption.
To show that the M4pys is non-decreasing function of €, we observe that the relation we proved
above can simply be written as

3
ij=1
3
= div <Z —&»hjj + @hih) >0
j=1
Integrating on balls of radius r, B,, and using the divergence theorem yields for any r
3 3
/ (Z —0ihj; + ajhih> NidA = / div (Z —ihj; + ajhih> >0
r j:1 T j:1

(©
Note, after taking the lim,_,, of the latter, the first term is simply a positive multiple of CMC‘I‘% ,
e=0

which concludes the proof.
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